Lineární diferenciální rovnice 2. řádu

Na začátku práce jsou uvedeny základní pojmy a vlastnosti z teorie lineárních diferenciálních rovnic a základní typy transformací. Poté práce pojednává o Sturmových srovnávacích větách. V poslední části je zařazena Reidova věta a metody z ní vycházející, tj. je uvedeno několik vět, pomocí nichž může...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Chvátal, Martin (Autor práce)
Další autoři: Došlý, Ondřej, 1956- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Čeština
Vydáno: 2010
Témata:
On-line přístup:http://is.muni.cz/th/268707/prif_b/
Obálka
LEADER 06237ctm a22012977a 4500
001 MUB01000634318
003 CZ BrMU
005 20100804161901.0
008 100701s2010 xr ||||| |||||||||||cze d
STA |a POSLANO DO SKCR  |b 2019-05-27 
035 |a (ISMU-VSKP)183836 
040 |a BOD114  |b cze  |d BOD004 
072 7 |a 517  |x Matematická analýza  |2 Konspekt  |9 13 
080 |a 517.91  |2 MRF 
080 |a 517.926  |2 MRF 
080 |a 517  |2 MRF 
100 1 |a Chvátal, Martin  |% UČO 268707  |* [absolvent PřírF MU]  |4 dis 
242 1 0 |a Second order linear differential equations  |y eng 
245 1 0 |a Lineární diferenciální rovnice 2. řádu  |h [rukopis] /  |c Martin Chvátal 
260 |c 2010 
300 |a 39 l. 
500 |a Vedoucí práce: Ondřej Došlý 
502 |a Bakalářská práce (Bc.)--Masarykova univerzita, Přírodovědecká fakulta, 2010 
520 2 |a Na začátku práce jsou uvedeny základní pojmy a vlastnosti z teorie lineárních diferenciálních rovnic a základní typy transformací. Poté práce pojednává o Sturmových srovnávacích větách. V poslední části je zařazena Reidova věta a metody z ní vycházející, tj. je uvedeno několik vět, pomocí nichž můžeme rozhodnout, zda je rovnice oscilatorická. Tato část je zakončena několika příklady, na nichž je uvedená teorie ilustrována.  |% cze 
520 2 9 |a At the beginning of the work, fundamental terms and attributes of the linear differential equations and the elementary types of transformations are mentioned. Further the notice is taken of Sturm's comparison theorems. At the last part, the work includes the Reid's Roundabout theorem and related methods by which we can decide whether the equation is oscillatory. This part is ended up by some examples, which ilustrate the previous theory.  |9 eng 
650 0 7 |a lineární diferenciální rovnice  |7 ph192875  |2 czenas 
650 0 7 |a obyčejné diferenciální rovnice  |7 ph123625  |2 czenas 
650 0 9 |a linear differential equations  |2 eczenas 
650 0 9 |a ordinary differential equations  |2 eczenas 
655 7 |a bakalářské práce  |7 fd132403  |2 czenas 
655 9 |a bachelor's theses  |2 eczenas 
658 |a Matematika  |b Obecná matematika  |c PřF B-MA OM (OM)  |2 CZ-BrMU 
700 1 |a Došlý, Ondřej,  |d 1956-  |7 ola2003201125  |% UČO 2317  |4 ths 
710 2 |a Masarykova univerzita.  |b Ústav matematiky a statistiky  |7 kn20091211007  |4 dgg 
856 4 1 |u http://is.muni.cz/th/268707/prif_b/ 
CAT |c 20100701  |l MUB01  |h 1343 
CAT |a ANTLOVA  |b 02  |c 20100727  |l MUB01  |h 1005 
CAT |a JANA  |b 02  |c 20100804  |l MUB01  |h 1619 
CAT |a PUTNOVAX  |b 02  |c 20110610  |l MUB01  |h 1256 
CAT |c 20110627  |l MUB01  |h 1918 
CAT |c 20110627  |l MUB01  |h 2327 
CAT |a batch  |b 00  |c 20120324  |l MUB01  |h 0139 
CAT |a POSPEL  |b 02  |c 20120328  |l MUB01  |h 1342 
CAT |a POSPEL  |b 02  |c 20120412  |l MUB01  |h 0929 
CAT |c 20120610  |l MUB01  |h 2008 
CAT |a HANAV  |b 02  |c 20120627  |l MUB01  |h 1442 
CAT |a HANAV  |b 02  |c 20120713  |l MUB01  |h 1109 
CAT |a BATCH  |b 00  |c 20130304  |l MUB01  |h 1101 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0752 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0759 
CAT |a POSPEL  |b 02  |c 20130925  |l MUB01  |h 1158 
CAT |a POSPEL  |b 02  |c 20140107  |l MUB01  |h 1237 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0738 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0742 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0750 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0753 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0741 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0745 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0754 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0757 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0803 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0808 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0816 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0825 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0740 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0844 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0849 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0855 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0912 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0925 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0936 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0940 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0945 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0957 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0755 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0801 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0829 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0839 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0847 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0851 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0902 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0905 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0909 
CAT |a POSPEL  |b 02  |c 20141204  |l MUB01  |h 0736 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0857 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0901 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 1015 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1114 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1117 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1129 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1133 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1136 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1335 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1339 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1343 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1343 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1347 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1350 
CAT |c 20150901  |l MUB01  |h 1445 
CAT |c 20150921  |l MUB01  |h 1406 
CAT |a BATCH  |b 00  |c 20151226  |l MUB01  |h 0110 
CAT |c 20190527  |l MUB01  |h 1024 
CAT |c 20210614  |l MUB01  |h 0947 
CAT |c 20210614  |l MUB01  |h 1936 
CAT |a BATCH  |b 00  |c 20210724  |l MUB01  |h 1157 
LOW |a POSLANO DO SKCR  |b 2019-05-27 
994 - 1 |l MUB01  |l MUB01  |m VYSPR  |1 PRIF  |a Přírodovědecká fakulta  |2 PRSMA  |b ÚK sklad - M  |3 K-12059  |5 3145348969  |8 20100727  |f 71  |f Prezenční SKLAD  |q 20180620  |r 20100727  |s dar 
AVA |a SCI50  |b PRIF  |c ÚK sklad - M  |d K-12059  |e available  |t K dispozici  |f 1  |g 0  |h N  |i 0  |j PRSMA