Natural prolongation of principal connections

Uvažujme hlavní $G$-bandl $\pi\colon P\to M$. Nechť $\Gamma$ je hlavní konexe na $P$ a $\Lambda$ je lineární konexe na bázi $M$. Studujeme hlavní konexe na $P$ a na jeho hlavním prodloužení $W^rP$. Popíšeme všechna možná přirozená prodloužení konexe $\Gamma$, vzhledem ke konexi $\Lambda$, na hlavní...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Vondra, Jan, 1980- (Autor práce)
Další autoři: Janyška, Josef, 1953-
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Angličtina
Vydáno: 2010.
Témata:
On-line přístup:http://is.muni.cz/th/43622/prif_d/
Obálka
Popis
Shrnutí:Uvažujme hlavní $G$-bandl $\pi\colon P\to M$. Nechť $\Gamma$ je hlavní konexe na $P$ a $\Lambda$ je lineární konexe na bázi $M$. Studujeme hlavní konexe na $P$ a na jeho hlavním prodloužení $W^rP$. Popíšeme všechna možná přirozená prodloužení konexe $\Gamma$, vzhledem ke konexi $\Lambda$, na hlavní konexe na hlavním prodloužení $W^rP$ bandlu $P$. Pro $r=1,2$ podáme plnou klasifikaci, pro $r\ge 3$ je dána báze přirozených operátorů, která generuje všechny možné přirozené hlavní konexe na $W^rP$. Pro případ obecné lineární grupy $GL(n)$ porovnáme obecný výsledek s výsledky získanými pomocí redukčních vět.
Consider principal $G$-bundle $\pi\colon P\to M$. Let $\Gamma$ be a principal connection on $P$ and let $\Lambda$ be a linear connection on the base $M$. We study principal connections on $P$ and on its principal gauge prolongation $W^rP$. We describe all possible natural prolongations of $\Gamma$, with respect to $\Lambda$, to principal connections on the principal gauge prolongation $W^rP$ of the bundle $P$. We give for $r=1,2$ the full classification, for $r\ge 3$ a base is given of natural operators which generates all possible natural principal connections on $W^rP$. We compare for the case of linear gauge group $GL(n)$ the general result to results derived with help of reduction theorems.
Popis jednotky:Vedoucí práce: Josef Janyška.
Fyzický popis:55 l.