Export byl úspěšný — 

Mooreova-Penrosova pseudoinverze, iterační algoritmy pro výpočet

V této bakalářské práci se věnujeme Moore-Penrosově pseudoinverzi a iteračním algoritmům pro výpočet. V první kapitole definujeme základní pojmy a metodu skeletního rozkladu matice. Druhá kapitola obsahuje základní definici a užitečné vlastnosti Moore-Penrosovy pseudoinverze a zobecněné inverze. V p...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Sestrienková, Simona (Autor práce)
Další autoři: Zelinka, Jiří, 1968- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Slovenština
Vydáno: 2013
Témata:
On-line přístup:http://is.muni.cz/th/379436/prif_b/
Obálka
LEADER 05472ctm a22011057a 4500
001 MUB01000865357
003 CZ BrMU
005 20140418112609.0
008 130702s2013 xr ||||| |||||||||||slo d
STA |a POSLANO DO SKCR  |b 2020-10-05 
035 |a (ISMU-VSKP)236212 
040 |a BOD114  |b cze  |d BOD004 
072 7 |a 51  |x Matematika  |2 Konspekt  |9 13 
080 |a 519.6  |2 MRF 
080 |a 512.643  |2 MRF 
100 1 |a Sestrienková, Simona  |% UČO 379436  |* [absolvent PřírF MU]  |4 dis 
242 1 0 |a Moore-Penrose pseudoinverse, iterative algorithms for calculating  |y eng 
245 1 0 |a Mooreova-Penrosova pseudoinverze, iterační algoritmy pro výpočet  |h [rukopis] /  |c Simona Sestrienková 
260 |c 2013 
300 |a x, 33 l. 
500 |a Vedoucí práce: Jiří Zelinka 
502 |a Bakalářská práce (Bc.)--Masarykova univerzita, Přírodovědecká fakulta, 2013 
520 2 |a V této bakalářské práci se věnujeme Moore-Penrosově pseudoinverzi a iteračním algoritmům pro výpočet. V první kapitole definujeme základní pojmy a metodu skeletního rozkladu matice. Druhá kapitola obsahuje základní definici a užitečné vlastnosti Moore-Penrosovy pseudoinverze a zobecněné inverze. V poslední kapitole se zaměřujeme na iterační algoritmy pro výpočet Moore-Penrosovy pseudoinverze doplněné vhodnými příklady.  |% cze 
520 2 9 |a In this thesis we study Moore-Penrose pseudoinverse and iterative algorithms for calculating. In the first part we define basics notions and rank factorization method. The second part comprises basics definitions and useful properties of Moore-Penrose pseudoinverse and generalized inverse. In the last chapter we focus on iterative algorithms for calculating Moore-Penrose pseudoinverse. The theoretical part is completed by appropriates examples.  |9 eng 
650 0 7 |a iterační metody  |7 ph121253  |2 czenas 
650 0 7 |a matice (matematika)  |7 ph122686  |2 czenas 
650 0 9 |a iterative methods (mathematics)  |2 eczenas 
650 0 9 |a matrices  |2 eczenas 
655 7 |a bakalářské práce  |7 fd132403  |2 czenas 
655 9 |a bachelor's theses  |2 eczenas 
658 |a Matematika  |b Finanční a pojistná matematika  |c PřF B-MA FINPOJ (FINPOJ)  |2 CZ-BrMU 
700 1 |a Zelinka, Jiří,  |d 1968-  |7 mzk2004248640  |4 ths 
710 2 |a Masarykova univerzita.  |b Ústav matematiky a statistiky  |7 kn20091211007  |4 dgg 
856 4 1 |u http://is.muni.cz/th/379436/prif_b/ 
CAT |c 20130702  |l MUB01  |h 0422 
CAT |a RACLAVSKA  |b 02  |c 20130715  |l MUB01  |h 1155 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0753 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0759 
CAT |a RACLAVSKA  |b 02  |c 20140414  |l MUB01  |h 1609 
CAT |a RACLAVSKA  |b 02  |c 20140418  |l MUB01  |h 1126 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0740 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0744 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0751 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0754 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0743 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0746 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0755 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0758 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0805 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0809 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0817 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0826 
CAT |c 20140911  |l MUB01  |h 1612 
CAT |c 20140912  |l MUB01  |h 1106 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0851 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0856 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0914 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0928 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0938 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0942 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0946 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0958 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0756 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0802 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0831 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0841 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0849 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0852 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0903 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0907 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0910 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0903 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1120 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1131 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1135 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1138 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1342 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1345 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1345 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1349 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1352 
CAT |c 20150703  |l MUB01  |h 1224 
CAT |c 20150901  |l MUB01  |h 1451 
CAT |c 20150921  |l MUB01  |h 1412 
CAT |a BATCH  |b 00  |c 20151226  |l MUB01  |h 0410 
CAT |c 20201005  |l MUB01  |h 1143 
CAT |a PTICHAX  |b 02  |c 20210413  |l MUB01  |h 2007 
CAT |c 20210614  |l MUB01  |h 1005 
CAT |c 20210614  |l MUB01  |h 1953 
CAT |a BATCH  |b 00  |c 20210724  |l MUB01  |h 1222 
LOW |a POSLANO DO SKCR  |b 2020-10-05 
994 - 1 |l MUB01  |l MUB01  |m VYSPR  |1 PRIF  |a Přírodovědecká fakulta  |2 PRSMA  |b ÚK sklad - M  |3 K-12521  |5 3145358592  |8 20130715  |f 71  |f Prezenční SKLAD  |q 20180621  |r 20130708  |s dar 
AVA |a SCI50  |b PRIF  |c ÚK sklad - M  |d K-12521  |e available  |t K dispozici  |f 1  |g 0  |h N  |i 0  |j PRSMA