Holonomy groups of pseudo-quaternionic-Kählerian manifolds

Klasifikace grup holonomií pseudo-Riemannovských variet je velmi aktuálním problémem současné diferenciální geometrie. Předložená dizertace nabízí několik příspěvků k řešení tohoto problému. Je podána klasifikace možných souvislých grup holonomií pseudo-kvaternionických-Kählerových variet s nenulovo...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Bezvitnaya, Natalia (Autor práce)
Další autoři: Slovák, Jan, 1960- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Angličtina
Vydáno: 2011
Témata:
On-line přístup:http://is.muni.cz/th/250206/prif_d/
Obálka
Popis
Shrnutí:Klasifikace grup holonomií pseudo-Riemannovských variet je velmi aktuálním problémem současné diferenciální geometrie. Předložená dizertace nabízí několik příspěvků k řešení tohoto problému. Je podána klasifikace možných souvislých grup holonomií pseudo-kvaternionických-Kählerových variet s nenulovou skalární křivostí a libovolnou signaturou. Dále jsou klasifikovány možné souvislé grupy holonomií pseudo-hyper-Kählerovských variet s indexem 4. Jako aplikace tohoto výsledku je uveden nový důkaz klasifikace pseudo-hyper-Kählerovských symetrických prostorů s indexem 4. Zejména jsou explicitně uvedeny tenzory křivosti a grupy holonomií těchto prostorů.
The classification of the holonomy groups of pseudo-Riemannian manifolds is an actual problem of differential geometry. This thesis gives several contributions to the solution of this problem. Possible connected holonomy groups of pseudo-quaternionic-Kählerian manifolds of non-zero scalar curvature and of arbitrary signature are classified. Also, possible connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4 are classified. As an application of the last result, a new proof of the classification of pseudo-hyper-Kählerian symmetric spaces of index 4 is obtained. In particular, the curvature tensors and holonomy groups of these spaces are given explicitly.
Popis jednotky:Vedoucí práce: Jan Slovák
Fyzický popis:74 s.