Geometrický přístup k diferenciálnímu a integrálnímu počtu

Práce je rozdělena do dvou částí. V první části se zaměřuji na definici derivace jako směrnice tečny ke grafu funkce a některé věty diferenciálního počtu z hlediska geometrie. Ve druhé části se zabývám tématem obsahu plochy vymezené danou funkcí a srovnávám integrál Riemannův a Lebesgueův. Demonstru...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Ptáčková, Zdeňka (Autor práce)
Další autoři: Slovák, Jan, 1960- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Čeština
Vydáno: 2010.
Témata:
On-line přístup:http://is.muni.cz/th/211215/prif_b/
Obálka
LEADER 06815ctm a22013817a 4500
001 MUB01000615651
003 CZ BrMU
005 20100216144708.0
008 100211s2010 xr ||||| |||||||||||cze d
STA |a POSLANO DO SKCR  |b 2019-05-06 
035 |a (ISMU-VSKP)165527 
040 |a BOD114  |b cze  |d BOD004 
072 7 |a 517  |x Matematická analýza  |2 Konspekt  |9 13 
080 |a 517.3  |2 MRF 
080 |a 517.2  |2 MRF 
080 |a 514  |2 MRF 
080 |a 517  |2 MRF 
100 1 |a Ptáčková, Zdeňka  |% UČO 211215  |* [absolvent PřírF MU]  |4 dis 
242 1 0 |a Geometric approach to calculus  |y eng 
245 1 0 |a Geometrický přístup k diferenciálnímu a integrálnímu počtu  |h [rukopis] /  |c Zdeňka Ptáčková. 
260 |c 2010. 
300 |a 23 l. 
500 |a Vedoucí práce: Jan Slovák. 
502 |a Bakalářská práce (Bc.)--Masarykova univerzita, Přírodovědecká fakulta, 2010. 
520 2 |a Práce je rozdělena do dvou částí. V první části se zaměřuji na definici derivace jako směrnice tečny ke grafu funkce a některé věty diferenciálního počtu z hlediska geometrie. Ve druhé části se zabývám tématem obsahu plochy vymezené danou funkcí a srovnávám integrál Riemannův a Lebesgueův. Demonstruji konstrukci určitého integrálu pomocí integrálních součtů, definuji křivkový a plošný integrál. Moje práce není klasickým učebním textem, jde spíše o pomůcku k přednáškám matematické analýzy, která nabízí způsob, jak intuitivně přistupovat k některým problémům diferenciálního a integrálního počtu s využitím geometrie.  |% cze 
520 2 9 |a My work is divided into two part. In the first part I am aim at definition of derivative as a slope of the tangent line to the graph of f and some theorems in differential calculus in light of geometry. In the second part I deal with theme surface area of the function and compare Riemann integral with Lebesgue integral. I illustrate construction of definite integral through integral sums, I define line and area integral. My work is not a classical learning text, it's a way, how grasp some problems with intuitive approach to calculus.  |9 eng 
650 0 7 |a diferenciální počet  |7 ph119442  |2 czenas 
650 0 7 |a geometrie  |7 ph114624  |2 czenas 
650 0 7 |a integrální počet  |7 ph121134  |2 czenas 
650 0 9 |a differential calculus  |2 eczenas 
650 0 9 |a geometry  |2 eczenas 
650 0 9 |a integral calculus  |2 eczenas 
655 7 |a bakalářské práce  |7 fd132403  |2 czenas 
655 9 |a bachelor's theses  |2 eczenas 
658 |a Matematika  |b Obecná matematika  |c PřF B-MA OM (OM)  |2 CZ-BrMU 
700 1 |a Slovák, Jan,  |d 1960-  |7 ola2003174876  |% UČO 1424  |4 ths 
710 2 |a Masarykova univerzita.  |b Ústav matematiky a statistiky  |7 kn20091211007  |4 dgg 
856 4 1 |u http://is.muni.cz/th/211215/prif_b/ 
CAT |c 20100211  |l MUB01  |h 0450 
CAT |a DRIMLOVA  |b 02  |c 20100215  |l MUB01  |h 1121 
CAT |a JANA  |b 02  |c 20100216  |l MUB01  |h 1447 
CAT |c 20100428  |l MUB01  |h 1014 
CAT |a BATCH-UPD  |b 00  |c 20100501  |l MUB01  |h 1230 
CAT |a BATCH-UPD  |b 00  |c 20100929  |l MUB01  |h 0337 
CAT |c 20110627  |l MUB01  |h 1917 
CAT |c 20110627  |l MUB01  |h 2327 
CAT |a POSPEL  |b 02  |c 20111013  |l MUB01  |h 1214 
CAT |a batch  |b 00  |c 20120324  |l MUB01  |h 0135 
CAT |a POSPEL  |b 02  |c 20120412  |l MUB01  |h 0929 
CAT |c 20120610  |l MUB01  |h 2002 
CAT |a HANAV  |b 02  |c 20121015  |l MUB01  |h 1453 
CAT |a HANAV  |b 02  |c 20121016  |l MUB01  |h 0949 
CAT |a HANAV  |b 02  |c 20121016  |l MUB01  |h 0949 
CAT |a BATCH  |b 00  |c 20130304  |l MUB01  |h 1026 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0751 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0759 
CAT |a POSPEL  |b 02  |c 20131217  |l MUB01  |h 1557 
CAT |a HANAV  |b 02  |c 20140401  |l MUB01  |h 1510 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0738 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0742 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0749 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0753 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0741 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0744 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0753 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0757 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0803 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0808 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0816 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0825 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0740 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0844 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0849 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0854 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0911 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0925 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0935 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0940 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0945 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0957 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0755 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0801 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0829 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0839 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0847 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0850 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0901 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0905 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0909 
CAT |a POSPEL  |b 02  |c 20141204  |l MUB01  |h 0736 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0857 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0901 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 1015 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1113 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1117 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1128 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1133 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1136 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1335 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1339 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1343 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1343 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1347 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1350 
CAT |c 20150901  |l MUB01  |h 1445 
CAT |c 20150921  |l MUB01  |h 1406 
CAT |a BATCH  |b 00  |c 20151226  |l MUB01  |h 0052 
CAT |c 20190506  |l MUB01  |h 1000 
CAT |c 20210614  |l MUB01  |h 0944 
CAT |c 20210614  |l MUB01  |h 1934 
CAT |a BATCH  |b 00  |c 20210724  |l MUB01  |h 1154 
CAT |a POSPEL  |b 02  |c 20231008  |l MUB01  |h 1623 
LOW |a POSLANO DO SKCR  |b 2019-05-06 
994 - 1 |l MUB01  |l MUB01  |m VYSPR  |1 PRIF  |a Přírodovědecká fakulta  |2 PRSMA  |b ÚK sklad - M  |3 K-12152  |5 3145347656  |8 20100215  |f 71  |f Prezenční SKLAD  |q 20180620  |r 20100215  |s dar 
AVA |a SCI50  |b PRIF  |c ÚK sklad - M  |d K-12152  |e available  |t K dispozici  |f 1  |g 0  |h N  |i 0  |j PRSMA