Applications of generative AI /

Uloženo v:
Podrobná bibliografie
Další autoři: Lyu, Zhihan (Editor)
Typ dokumentu: Kniha
Jazyk:Angličtina
Vydáno: Cham : Springer International Publishing AG, 2024
Témata:
On-line přístup:Elektronická verze přístupná pouze pro studenty a pracovníky MU
Příbuzné jednotky:Tištěná verze:: Applications of generative AI
Obsah:
  • Intro
  • Contents
  • Generative AI as a Supportive Tool for Scientific Research
  • 1 Generative AI History and Evolution
  • 2 How Does GAI Models Work?-Training GAI Models: Data Sources and Techniques
  • 3 The Difference Between Conventional ML and Deep Learning (DL) Systems, Generative AI Models and Prompt Based ML (PML)
  • 4 GAI Model Usages and Tools
  • 4.1 Pre-writning Stage
  • 4.2 Writing Stage
  • 4.3 Post-writing Stage
  • 5 Optimizing and Utilizing GAI Models Through Prompt Engineering
  • 6 Generative Models Evaluation and Metrics
  • 7 Does Chat GAI Models Cheat? - GAI Pitfalls and Their Proposed Solutions
  • 8 Generative AI the Next Generation: Challenges and Opportunities
  • 9 Conclusions
  • References
  • Creating Ad Campaigns Using Generative AI
  • 1 Introduction
  • 2 Foundations
  • 3 Methodology
  • 3.1 Preliminaries
  • 3.2 Encoder-Decoder Architecture
  • 4 Empirical Results
  • 4.1 Datasets
  • 4.2 Evaluation Metrics
  • 4.3 The Effect of Attention
  • 4.4 The Effect of Reinforcement
  • 4.5 The Effect of Pre-training
  • 5 Conclusion
  • References
  • Unlocking the Potential of Generative Artificial Intelligence in Drug Discovery
  • 1 Introduction
  • 2 The Generative Model's Toolkit
  • 2.1 The Power of Big Data in Drug Discovery
  • 2.2 Molecular Representations
  • 3 Generative Models: A Brief Overview
  • 3.1 Artificial Neural Networks
  • 3.2 (RNN)-Based Models
  • 3.3 (AE)-Based Models
  • 3.4 GAN-Based Models
  • 3.5 Transfer Learning
  • 3.6 Reinforcement Learning
  • 3.7 Evaluation Metrics
  • 4 Applications of Generative Models in Drug Design
  • 4.1 3D Generative Models
  • 4.2 Success Stories in Early Drug Discovery
  • 5 Concluding Remarks and Future Perspectives
  • References
  • Privacy in Generative Models: Attacks and Defense Mechanisms
  • 1 Introduction
  • 2 Generative Adversarial Network
  • 3 Privacy Attacks in Generative Models.
  • 3.1 Membership Inference Attack
  • 3.2 Model Inversion Attacks
  • 3.3 Future Directions
  • 4 Privacy-Preserving Mechanisms in GANs
  • 4.1 Differential Privacy
  • 4.2 Privacy-Preserving Approaches in GANs
  • 4.3 Future Directions
  • 5 Summary
  • References
  • Generative Adversarial Network for Synthetic Image Generation Method: Review, Analysis, and Perspective
  • 1 Introduction
  • 2 Generative Adversarial Networks (GAN) Model
  • 3 Formula of Various GANs Model
  • 4 Review of the Applications of GANs to Synthetic Image Generation Studies
  • 5 Conclusions
  • References
  • Image Rendering with Generative Adversarial Networks
  • 1 Introduction
  • 2 Neural Rendering
  • 2.1 Image-Based Neural Rendering
  • 2.2 Geometric Neural Rendering
  • 3 Generative Models
  • 3.1 Brief History of Generative Adversarial Networks
  • 3.2 Basic GAN Architecture
  • 3.3 GAN-Based Methods for Image Synthesis
  • 4 Applications of Generative Models for Image Rendering
  • 5 Challenges and Future Directions
  • 6 Conclusion
  • References
  • Dsmk-DcSeg-Lap, a Generative Adversarial Network Guided by Dark-Chanel and Segmentation to Smoke Removal in Laparoscopic Images
  • 1 Introduction
  • 2 Related Work
  • 3 Background
  • 3.1 Artificial Neural Network
  • 3.2 U-Net
  • 3.3 Conditional GAN y Pix2Pix
  • 4 Dark-Channel and Segmentation
  • 4.1 Hazy Image Formation
  • 4.2 Dark Channel Prior (DCP)
  • 4.3 Segmentation
  • 5 GAN Powered by Dark-Channel and Segmentation
  • 5.1 Training
  • 6 Metrics
  • 7 Results and Discussion
  • 7.1 Quantitative Analysis
  • 7.2 Qualitative Analysis
  • 8 Conclusion
  • References
  • Generative AI Use in the Construction Industry
  • 1 A General Overview for Generative AI
  • 2 Technological Requirements for Generative AI Application in the AEC-FM Industry
  • 2.1 Internet of Things (IoT)
  • 2.2 Distributed Ledger Technology
  • 2.3 Computing Technologies.
  • 2.4 Deep Learning
  • 2.5 Natural Language Processing
  • 2.6 Knowledge Graph
  • 2.7 Computer Vision
  • 2.8 Immersive Technologies
  • 3 Generative AI Applications in the AEC-FM Industry
  • 4 BIM as a Generative AI Facilitator for the AEC-FM Industry Applications
  • 5 Gaps and Trends for Generative AI Research in the AEC-FM Industry
  • 5.1 Keyword Co-occurrence Analysis for Generative AI Use in the AEC-FM Industry
  • 6 Future Prospects for Generative AI in the AEC-FM Activities
  • References
  • Generative AI Applications in the Health and Well-Being Domain: Virtual and Robotic Assistance and the Need for Niche Language Models (NLMs)
  • 1 Applications
  • 2 Recent Advances
  • 3 Bots-Non-embodied, Virtual Health Assistants
  • 4 Robotic Assistants and Companions
  • 5 Advantages and Challenges-The Case of Nursing
  • 5.1 Adults
  • 5.2 Elders
  • 5.3 Children
  • -6 Summary-Limitations and Future Challenges
  • References
  • Generative Adversarial Network Based Deep Learning Method for Machine Vision Inspection
  • 1 Introduction
  • 2 Automatic Generation Method of Image Samples Besed on Generative Adversarial Network
  • 2.1 Schematic Diagram of CycleGAN Method
  • 3 Automatic Defect Image Inspection Based on Generative Adversarial Networks
  • 3.1 Unsupervised Generative Adversarial Network Model
  • 4 Experimental Results and Analysis
  • 4.1 Experiments and Results Foe CycleGan Based Dataset Augmentation
  • 4.2 Experimental Results and Analysis for Automatic Defect Image Inspection Based on Generative Adversarial Networks
  • 5 Conclusion
  • References
  • Generative Adversarial Networks for Stain Normalisation in Histopathology
  • 1 Histopathology
  • 2 Style Transfer
  • 2.1 Generative Models
  • 2.2 Similarity Metrics
  • 2.3 Loss Functions
  • 2.4 Multi-generator Methods
  • -3 Stain Normalisation
  • 3.1 Traditional Normalisation
  • 4 Generative Stain Normalisation.
  • 4.1 Single Generator Normalisation Approaches
  • 4.2 Multi-generator Normalisation Approaches
  • 5 Augmentation and Synthesis in Histopathology
  • 6 Conclusion
  • References
  • Augmenting Data from Epileptic Brain Seizures Using Deep Generative Networks
  • 1 Introduction
  • 2 Characterization of Brain Seizures in Vitro
  • 3 Capturing Epileptic Waves with a Deep GAN Model
  • 4 Training a Convolutional Network on Augmented Seizure Data
  • 5 Discussion
  • 6 Conclusions
  • References
  • Can Generative Artificial Intelligence Foster Belongingness, Social Support, and Reduce Loneliness? A Conceptual Analysis
  • 1 Introduction
  • 2 Literature
  • 2.1 Artificial Intelligence
  • 2.2 Sense of Belonging, Loneliness, and Social Support
  • 3 Short-Term Artificial Intelligence Social Gains?
  • 4 The Dark Side of Chatbot Social Interaction
  • 5 Conclusion
  • References
  • The SEARCH for AI-Informed Wellbeing Education: A Conceptual Framework
  • 1 Introduction
  • 2 Why Use Generative AI in Wellbeing Education?
  • 3 The SEARCH for AI-Driven Wellbeing Education
  • 3.1 Strengths
  • 3.2 Emotional Management
  • 3.3 Attention and Awareness
  • 3.4 Relationships
  • 3.5 Coping
  • 3.6 Habits and Goals
  • 3.7 Summary of AI-Enhanced SEARCH Framework
  • 4 Conclusion
  • References
  • Generative AI to Understand Complex Ecological Interactions
  • 1 Introduction
  • 2 Biodiversity in Restoration Ecology
  • 3 Plant Interactions
  • 4 Distribution Learning for Vegetation Patches
  • 5 Transfer Learning in Community Ecology
  • 6 Data Augmentation for Plant Communities
  • 7 Synthetic Data for Successional Trajectories
  • 8 Summary
  • References
  • On the Effect of Loss Function in GAN Based Data Augmentation for Fault Diagnosis of an Industrial Robot
  • 1 Introduction
  • 2 Methodology
  • 2.1 On GAN
  • 2.2 On Wasserstein GAN and Conditional Wasserstein GAN
  • 2.3
  • 2.4 On SW-CycleGAN
  • 3 Experiments
  • 3.1 The Industrial Robot Test Rig and Data Set
  • 3.2 Experimental Settings of VGAN
  • 3.3 Experimental Settings of SW-CycleGAN
  • 4 Results and Discussion
  • 4.1 Results on VGAN
  • 4.2 Results on SW-CycleGAN
  • 5 Conclusion
  • References
  • Underwater Acoustic Noise Modeling Based on Generative-Adversarial- Network
  • 1 Introduction
  • 2 Analysis of Real Underwater Noise
  • 3 GAN-Based Underwater Noise Simulator
  • 3.1 Introduction of GAN
  • 3.2 GAN Structure for Noise Simulations
  • 4 Numerical Simulations and Discussions
  • 4.1 Parametric Configuration of GAN-Based Noise Simulator
  • 4.2 Accuracy Analysis for GAN and Traditional Non-gaussian Models
  • 4.3 Complexity Analysis
  • 5 Conclusions
  • References
  • How Generative AI Is Transforming Medical Imaging: A Practical Guide
  • 1 Generative AI for Images: What It Is and How It Works
  • -2 GANs, VAEs and Diffusion Models: What Are They?
  • 3 How Can Generative AI Help Medical Imaging?
  • 4 What Are the Pros and Cons of Generative AI for Medical Imaging?
  • 5 How Generative AI Has Improved Medical Imaging: A Showcase of Successful Applications
  • 5.1 Generating Mammogram Images with Contextual Information Using GANs
  • 5.2 Augmenting Medical Images Using Semi-supervised GANs and Attention Mechanism
  • 5.3 EndoVAE: An Innovative Variational Autoencoder for Endoscopic Image Generation
  • 5.4 Restoring Medical Images with Variational Autoencoders
  • 5.5 Brain Imaging Made Easy with Latent Diffusion Models
  • 5.6 Creating Realistic 3D Medical Images with Denoising Diffusion Models
  • 6 Generative AI Outlook: A Game-Changer for Healthcare and Biomedical Research
  • 6.1 Key Takeaways and Findings of the Chapter
  • -6.2 Recommendations for Generative AI Users and Stakeholders
  • 6.3 Future Directions for Generative AI Research for Medical Imaging
  • References.
  • Generative AI in Medical Imaging and Its Application in Low Dose Computed Tomography (CT) Image Denoising.