Renewable and alternative energy resources /
Uloženo v:
Hlavní autoři: | , , , |
---|---|
Typ dokumentu: | Kniha |
Jazyk: | Angličtina |
Vydáno: |
San Diego :
Elsevier Science & Technology,
[2022]
|
Témata: | |
On-line přístup: | Elektronická verze přístupná pouze pro studenty a pracovníky MU |
Příbuzné jednotky: | Tištěná verze::
Renewable and alternative energy resources |
Obsah:
- Front Cover
- Renewable and Alternative Energy Resources
- Copyright Page
- Dedication
- Contents
- About the authors
- Foreword
- Preface
- Acknowledgments
- 1 Energy resources and utilization
- 1.1 Sources and types of energy resources
- 1.1.1 Nonrenewable energy resources
- 1.1.1.1 The hidden cost of fossil fuels
- 1.1.2 Renewable energy resources
- 1.1.2.1 History of renewable energy
- 1.1.2.2 Need of renewable energy resources
- 1.1.2.2.1 Climate change
- 1.1.2.2.2 Peak fossil oil
- 1.1.2.2.3 Greenhouse gases
- 1.1.2.2.4 Energy security
- 1.1.3 Energy policies
- 1.1.3.1 Biofuel directive
- 1.1.3.2 Kyoto protocol
- 1.1.4 Biofuels
- 1.1.5 Countries with major dependency on nonrenewable energy
- 1.1.6 Emerging technologies
- 1.1.7 Future perspective
- References
- 2 Nonrenewable energy resources
- 2.1 Nonrenewable energy resources
- 2.1.1 Coal
- 2.1.1.1 Global trends in production and trade of coal
- 2.1.1.2 Conversion of coal into electrical energy
- 2.1.1.3 Coal in production of steel
- 2.1.1.4 Liquefaction of coal
- 2.1.1.5 Use of coal in cement industry
- 2.1.1.6 Effects of coal mining on environment
- 2.1.1.7 Land disturbances caused by coal mines
- 2.1.1.8 Mine subsidence
- 2.1.1.9 Water pollution from coal mines
- 2.1.1.10 Air pollution
- 2.1.1.11 Noise pollution
- 2.1.1.12 Restoring the environment to its natural state
- 2.1.1.12.1 Rehabilitation
- 2.1.1.12.2 Overburden material classification
- 2.1.1.12.3 Land recontouring
- 2.1.1.12.4 Regeneration
- 2.1.1.13 Coal mine methane
- 2.1.1.13.1 Cleaner coal production
- 2.1.1.13.2 Coal washing
- 2.1.1.13.3 Particulate matter
- 2.1.1.13.4 Solutions to acid rain
- 2.1.1.13.5 Restoration of damaged environment
- 2.1.1.13.6 Alternative energy resources
- 2.1.1.13.7 Individual, national/state and international actions.
- 2.1.1.13.8 Reduction of carbon dioxide in air
- 2.1.1.13.9 Reduction in vehicular emissions
- 2.1.1.13.10 Reduced energy consumption
- 2.1.1.13.11 Reduced waste consumption
- 2.1.1.13.12 Restoration of natural sinks
- 2.1.1.13.13 Miscellaneous options
- 2.1.1.14 Future of coal-based energy
- 2.1.2 Petroleum
- 2.1.2.1 History of petroleum
- 2.1.2.2 Chemistry of petroleum
- 2.1.2.3 Sources of petroleum
- 2.1.2.4 Formation of petroleum
- 2.1.2.5 Recovery of oil and gas
- 2.1.2.5.1 Primary recovery: natural drive and artificial lift
- 2.1.2.5.2 Secondary recovery: injection of gas or water
- 2.1.2.5.3 Enhanced recovery
- 2.1.2.6 Classification of crude oil
- 2.1.2.7 Geology of petroleum
- 2.1.2.8 Natural petroleum reservoirs
- 2.1.2.9 Extraction of petroleum
- 2.1.2.10 Petroleum and environment: bitumen and boreal forest
- 2.1.2.11 Refining of petroleum
- 2.1.2.12 Current petroleum industries
- 2.1.2.13 Use of petroleum
- 2.1.2.14 Future of petroleum
- 2.1.3 Natural gas
- 2.1.3.1 Chemical composition of natural gas
- 2.1.3.2 Typical combustion properties of natural gas
- 2.1.3.3 Composition and properties
- 2.1.3.4 Brief history of natural gas
- 2.1.3.5 Formation of natural gas
- 2.1.3.6 Methane as a natural gas
- 2.1.3.7 Types of natural gas
- 2.1.3.8 Use of natural gas
- 2.1.3.9 Production of electrical energy
- 2.1.3.10 Transportation fuel
- 2.1.3.11 Heating and cogeneration
- 2.1.3.11.1 Common combined heat and power configurations
- 2.1.3.12 Liquefied natural gas
- 2.1.3.13 Fueling of a growing market with liquefied natural gas
- 2.1.3.14 Greenhouse gas emissions
- 2.1.3.15 Impact on renewable energy
- 2.1.3.16 Propane
- 2.1.3.17 Benefits of liquefied petroleum gas
- 2.1.3.18 Future perspective
- 2.1.4 Nuclear power
- 2.1.4.1 Nuclear fission
- 2.1.4.1.1 Controlled nuclear fission.
- 2.1.4.2 Nuclear fusion
- 2.1.4.2.1 Fusion technology
- 2.1.4.3 Nuclear reactors
- 2.1.4.4 Nuclear waste
- 2.1.4.5 The rise of nuclear power
- 2.1.4.6 The fall of nuclear power
- 2.1.4.7 Radioactive waste management
- 2.1.4.8 Types of radioactive wastes
- 2.1.4.8.1 Low-level waste
- 2.1.4.8.2 Intermediate-level waste
- 2.1.4.8.3 High-level waste
- 2.1.4.8.4 Very low-level waste
- 2.1.4.9 Mining of uranium for fabrication of fuel
- 2.1.4.10 Generation of electrical energy
- 2.1.4.11 Reprocessing of used fuel
- 2.1.4.12 Decommissioning of nuclear plants
- 2.1.4.12.1 Legacy wastes
- 2.1.4.12.2 Nonnuclear power wastes
- 2.1.4.12.3 Treatment and conditioning
- 2.1.4.12.4 Storage and disposal
- 2.1.4.13 Nuclear-based power projects
- References
- 3 Future energy options: an overview
- 3.1 Shale gas
- 3.1.1 Origin of shale gas
- 3.1.2 Distinctive properties of shale gas
- 3.1.3 History of shale gas
- 3.1.4 Natural reserves of shale gas
- 3.1.5 Production and extraction of shale gas
- 3.1.5.1 Hydraulic fracturing
- 3.1.6 Shale gas in worldwide basins
- 3.1.7 Estimates of conservative shale gas basins
- 3.1.8 Highly dependent countries
- 3.1.9 Proper natural gas infrastructure
- 3.1.10 Importance of shale gas
- 3.1.11 Global shale gas reserves
- 3.1.12 Environmental impacts of shale gas
- 3.1.12.1 Contamination of natural water resources
- 3.1.12.2 Induced seismic vibrations
- 3.1.12.3 Release of greenhouse gases
- 3.1.12.4 Excessive utilization of water
- 3.1.12.5 Huge economic burden
- 3.1.13 Future of shale gas
- 3.2 Offshore wind energy and offshore wind farm
- 3.2.1 Offshore wind energy
- 3.2.2 Working of wind turbines
- 3.2.3 Types of offshore wind turbines
- 3.2.3.1 Fixed foundation offshore wind turbines
- 3.2.3.2 Floating offshore wind turbines
- 3.2.3.3 Vertical axis offshore wind turbines.
- 3.2.4 Offshore wind farm
- 3.2.4.1 Localization of offshore wind farms
- 3.2.4.2 Components of offshore wind farm
- 3.2.4.3 Characteristics of offshore wind power
- 3.2.5 Major components of wind turbines
- 3.2.5.1 Nacelle
- 3.2.5.2 Rotor blades
- 3.2.5.3 Tower
- 3.2.6 Offshore wind energy resources
- 3.2.7 Commercial offshore wind energy generation
- 3.2.8 Transportation of wind generated energy
- 3.2.9 Economics of building and operating offshore wind farms
- 3.2.9.1 Investment costs
- 3.2.9.2 Energy cost
- 3.2.9.3 Offshore wind power by different countries
- 3.2.9.4 Harmful environmental consequences
- 3.2.9.4.1 Visual impacts
- 3.2.9.4.2 Noise impacts
- 3.2.9.4.3 Construction and decommissioning noises
- 3.2.9.4.4 Operational noises
- 3.2.10 Future energy projects
- 3.3 Carbon capture technology
- 3.3.1 Introduction of carbon capture technology
- 3.3.2 Working principle and capturing methods
- 3.3.3 Postcombustion processes
- 3.3.4 Precombustion processes
- 3.3.5 Oxyfuel combustion
- 3.3.6 Carbon dioxide separation technologies
- 3.3.6.1 Absorption
- 3.3.6.2 Adsorption
- 3.3.7 Chemical looping combustion
- 3.3.8 Membrane separation process
- 3.3.9 Hydrate based separation
- 3.3.10 Cryogenic distillation
- 3.3.11 Transportation of carbon dioxide
- 3.3.12 Storage of carbon dioxide
- 3.3.13 Impacts on environment
- 3.3.14 Global scenario
- References
- 4 Solar thermal energy and photovoltaic systems
- 4.1 Solar thermal energy
- 4.1.1 Concentrated solar thermal systems
- 4.1.1.1 Types of concentrated solar thermal technology
- 4.1.1.1.1 Solar thermal storage
- 4.1.1.1.2 Solar water heating
- 4.1.1.1.3 Solar distillation
- Method 1
- Method 2
- 4.1.1.1.4 Other purification processes
- 4.1.1.2 Heating of swimming pool by solar energy
- 4.1.1.2.1 Working principle.
- 4.1.1.2.2 Example of working of solar collector
- 4.1.1.3 Stand-alone solar rankine system
- 4.1.1.3.1 Storage tank
- 4.1.1.4 Hybrid system
- 4.1.2 Integrated solar combined cycle system
- 4.1.3 Combined cycle system
- 4.1.4 Combined power plant
- 4.1.5 Solar thermal power systems using concentrated solar energy
- 4.1.6 Solar ponds
- 4.1.6.1 Working of solar water pumping system
- 4.1.6.2 Sun drying
- 4.1.6.3 Integrated solar dryers
- 4.1.6.4 Distributed solar dryers
- 4.1.6.5 Solar cookers
- 4.1.7 Energy efficiency in buildings
- 4.1.7.1 Low, passive, zero and plus energy buildings
- 4.1.7.1.1 Type 0-Standard building
- 4.1.7.1.2 Type I-Low energy building
- 4.1.7.1.3 Type II-Passive energy building
- 4.1.7.1.4 Type III-Zero energy building
- 4.1.7.1.5 Type IV-Plus energy building
- 4.1.7.2 Working of energy efficient buildings
- 4.1.7.3 Refining the design
- 4.1.7.3.1 Direct gain
- 4.1.7.3.2 Indirect gain
- 4.1.7.3.3 Thermal storage wall systems
- 4.1.7.3.4 Roof pond systems
- 4.1.8 Indirect gain system rules of thumb for thermal storage walls
- 4.1.8.1 The principle of evaporative cooling
- 4.1.8.1.1 Dry bulb temperature
- 4.1.8.1.2 Wet bulb temperature
- 4.1.8.1.3 Working of evaporative air conditioner
- 4.1.8.1.4 Evaporative cooling
- 4.1.8.1.5 Importance of evaporative cooling
- 4.1.8.2 Absorption cooling system
- 4.1.8.2.1 Working of absorption cooling system
- 4.1.8.2.2 Absorption cooling in commercial buildings
- 4.1.8.3 Desiccant cooling systems
- 4.1.8.3.1 Solid desiccant cooling
- 4.1.8.3.2 Liquid desiccant cooling
- 4.1.9 Greenhouse gases-a severe atmospheric constrain
- 4.1.10 Solar furnace
- 4.1.10.1 Historical background of solar furnace
- 4.1.10.2 Working of solar furnace
- 4.1.10.3 Use of solar furnace for different applications
- 4.1.10.4 Temperature range of solar furnaces.