Dualita v matematickém programování

Tématem této diplomové práce je Dualita v matematickém programování. Práce je rozdělena mezi šest kapitol. V první kapitole jsou vymezeny základní pojmy a definice, které jsou využity v kapitolách následujících. Ve druhé kapitole se zabývám Fenchelovou transformací a konjugovanými funkcemi, jsou zde...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Vašíčková, Lenka (Autor práce)
Další autoři: Došlý, Ondřej, 1956- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Čeština
Vydáno: 2010
Témata:
On-line přístup:http://is.muni.cz/th/175386/prif_m/
Obálka
LEADER 06668ctm a22012737a 4500
001 MUB01000645995
003 CZ BrMU
005 20101203102441.0
008 100701s2010 xr ||||| |||||||||||cze d
STA |a POSLANO DO SKCR  |b 2019-05-27 
035 |a (ISMU-VSKP)167537 
040 |a BOD114  |b cze  |d BOD004 
072 7 |a 519.1/.8  |x Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelování  |2 Konspekt  |9 13 
080 |a 519.85  |2 MRF 
080 |a 519  |2 MRF 
100 1 |a Vašíčková, Lenka  |% UČO 175386  |* [absolvent PřírF MU]  |4 dis 
242 1 0 |a Duality in mathematical programming  |y eng 
245 1 0 |a Dualita v matematickém programování  |h [rukopis] /  |c Lenka Vašíčková 
260 |c 2010 
300 |a 42 l. 
500 |a Vedoucí práce: Ondřej Došlý 
502 |a Diplomová práce (Mgr.)--Masarykova univerzita, Přírodovědecká fakulta, 2010 
520 2 |a Tématem této diplomové práce je Dualita v matematickém programování. Práce je rozdělena mezi šest kapitol. V první kapitole jsou vymezeny základní pojmy a definice, které jsou využity v kapitolách následujících. Ve druhé kapitole se zabývám Fenchelovou transformací a konjugovanými funkcemi, jsou zde uvedeny konkrétní příklady a jejich řešení. Třetí kapitola pojednává o Lagrangeově principu a Kuhnových-Tuckerových podmínkách. Ve čtvrté kapitole se zabývám teorií duality, vymezením primární a duální úlohy. V páté kapitole jsou popsány vzájemné vztahy mezi úlohami matematického programování a v šesté kapitole jsou uvedeny příklady duálních úloh a jejich řešení.  |% cze 
520 2 9 |a The topic of this thesis is Duality in mathematical programming. This thesis consists of six chapters. In the first chapter I layed out the basic concepts and definitions used in the following chapters. The Fenchel transformation and conjugate functions are described in chapter two, where I also present particular problems and their solutions. Chapter three describes the Lagrangian form and Kuhn-Tucker conditions. Chapter four deals with the theory of duality and defining primary and dual problems. Chapter five pursues the relations between individual mathematical programming problems and chapter six lists examples of dual problems and their solutions.  |9 eng 
650 0 7 |a matematická optimalizace  |7 ph122672  |2 czenas 
650 0 9 |a mathematical optimization  |2 eczenas 
655 7 |a diplomové práce  |7 fd132022  |2 czenas 
655 9 |a master's theses  |2 eczenas 
658 |a Aplikovaná matematika  |b Finanční matematika  |c PřF N-AM FINA (FINA)  |2 CZ-BrMU 
700 1 |a Došlý, Ondřej,  |d 1956-  |7 ola2003201125  |% UČO 2317  |4 ths 
710 2 |a Masarykova univerzita.  |b Ústav matematiky a statistiky  |7 kn20091211007  |4 dgg 
856 4 1 |u http://is.muni.cz/th/175386/prif_m/ 
CAT |c 20100702  |l MUB01  |h 1037 
CAT |a MENSIKOVA  |b 02  |c 20100823  |l MUB01  |h 1040 
CAT |a JANA  |b 02  |c 20101203  |l MUB01  |h 1024 
CAT |a PUTNOVAX  |b 02  |c 20110610  |l MUB01  |h 1256 
CAT |c 20110627  |l MUB01  |h 1918 
CAT |c 20110627  |l MUB01  |h 2328 
CAT |a batch  |b 00  |c 20120324  |l MUB01  |h 0139 
CAT |a POSPEL  |b 02  |c 20120328  |l MUB01  |h 1342 
CAT |a POSPEL  |b 02  |c 20120412  |l MUB01  |h 0929 
CAT |c 20120610  |l MUB01  |h 2009 
CAT |a HANAV  |b 02  |c 20120627  |l MUB01  |h 1442 
CAT |a HANAV  |b 02  |c 20120713  |l MUB01  |h 1109 
CAT |a BATCH  |b 00  |c 20130304  |l MUB01  |h 1109 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0752 
CAT |a POSPEL  |b 02  |c 20130815  |l MUB01  |h 0759 
CAT |a POSPEL  |b 02  |c 20130925  |l MUB01  |h 1158 
CAT |a POSPEL  |b 02  |c 20140107  |l MUB01  |h 1237 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0738 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0743 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0750 
CAT |a POSPEL  |b 02  |c 20140522  |l MUB01  |h 0753 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0741 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0745 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0754 
CAT |a POSPEL  |b 02  |c 20140610  |l MUB01  |h 0757 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0803 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0808 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0816 
CAT |a POSPEL  |b 02  |c 20140611  |l MUB01  |h 0825 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0740 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0844 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0849 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0855 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0912 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0926 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0936 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0941 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0945 
CAT |a POSPEL  |b 02  |c 20141126  |l MUB01  |h 0957 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0748 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0755 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0801 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0829 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0839 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0847 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0851 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0902 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0905 
CAT |a POSPEL  |b 02  |c 20141127  |l MUB01  |h 0909 
CAT |a POSPEL  |b 02  |c 20141204  |l MUB01  |h 0736 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0858 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 0901 
CAT |a POSPEL  |b 02  |c 20141216  |l MUB01  |h 1015 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1114 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1118 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1129 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1133 
CAT |a POSPEL  |b 02  |c 20150108  |l MUB01  |h 1137 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1335 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1339 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1343 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1343 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1347 
CAT |a POSPEL  |b 02  |c 20150113  |l MUB01  |h 1350 
CAT |c 20150901  |l MUB01  |h 1445 
CAT |c 20150921  |l MUB01  |h 1406 
CAT |a BATCH  |b 00  |c 20151226  |l MUB01  |h 0115 
CAT |c 20161008  |l MUB01  |h 2238 
CAT |c 20190527  |l MUB01  |h 1024 
CAT |c 20210614  |l MUB01  |h 0947 
CAT |c 20210614  |l MUB01  |h 1936 
CAT |a BATCH  |b 00  |c 20210724  |l MUB01  |h 1158 
LOW |a POSLANO DO SKCR  |b 2019-05-27 
994 - 1 |l MUB01  |l MUB01  |m VYSPR  |1 PRIF  |a Přírodovědecká fakulta  |2 PRSMA  |b ÚK sklad - M  |3 K-12131  |5 3145349204  |8 20100823  |f 71  |f Prezenční SKLAD  |q 20180620 
AVA |a SCI50  |b PRIF  |c ÚK sklad - M  |d K-12131  |e available  |t K dispozici  |f 1  |g 0  |h N  |i 0  |j PRSMA