Moduly nad okruhy hlavních ideálů
Práce se zabývá odvozením a aplikací vlastností modulů nad okruhy hlavních ideálů. V první kapitole je uvedena definice modulu a pojmy používané v dalším textu. V druhé kapitole se odvozují vlastnosti torzních modulů nad okruhy hlavních ideálů, které se následně použijí v důkazu věty o rozkladu na p...
Uloženo v:
Hlavní autor: | |
---|---|
Další autoři: | |
Typ dokumentu: | VŠ práce nebo rukopis |
Jazyk: | Čeština |
Vydáno: |
2010
|
Témata: | |
On-line přístup: | http://is.muni.cz/th/251365/prif_b/ |
Shrnutí: | Práce se zabývá odvozením a aplikací vlastností modulů nad okruhy hlavních ideálů. V první kapitole je uvedena definice modulu a pojmy používané v dalším textu. V druhé kapitole se odvozují vlastnosti torzních modulů nad okruhy hlavních ideálů, které se následně použijí v důkazu věty o rozkladu na parciální zlomky. Ve třetí kapitole se zabýváme konečně generovanými moduly nad okruhy hlavních ideálů, pro které, jak dokážeme, platí, že jsou izomorfní vhodnému součtu cyklických modulů. V poslední kapitole se použijí výsledky třetí kapitoly k důkazu, že každá matice je podobná matici v racionálním kanonickém tvaru a k odvození algoritmu na jeho nalezení. In this work, we look into properties od modules over principal ideal domain and applications of those. First chapter consist of definition of module and terms used in following text. In second chapter, we derive properties of torsion modules over principal ideal domain, which are used to prove parcial fraction decomposition. In third chapter we study finitely generated modules over principal ideal domain, which, as we prove, are isomorphic to suitable sum of cyclic modules. The results of third chapter are used in the last chapter to show, that every square matrix is similar to matrix in rational canonical form and the algorithm how to find it. |
---|---|
Popis jednotky: | Vedoucí práce: Radan Kučera |
Fyzický popis: | 42 l. |