|
|
|
|
| LEADER |
01853nam a22004577a 4500 |
| 001 |
MUB01000586730 |
| 003 |
CZ BrMU |
| 005 |
20090610131728.0 |
| 008 |
090610s1893 gw ||||| |||||||||||ger d |
| STA |
|
|
|a POSLANO DO SKCR
|b 2018-08-31
|
| 040 |
|
|
|a BOD004
|b cze
|
| 072 |
|
7 |
|a 512
|x Algebra
|2 Konspekt
|9 13
|
| 080 |
|
|
|a 512.54
|2 MRF
|
| 080 |
|
|
|a 512
|2 MRF
|
| 100 |
1 |
|
|a Lie, Sophus,
|d 1842-1899
|7 jn20000720149
|4 aut
|
| 245 |
1 |
0 |
|a Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen /
|c Sophus Lie ; bearbeitet und herausgegeben on Georg Scheffers.
|
| 260 |
|
|
|a Leipzig :
|b B.G. Teubner,
|c 1893.
|
| 300 |
|
|
|a xii, 810 s.
|
| 650 |
0 |
7 |
|a teorie grup
|7 ph126556
|2 czenas
|
| 650 |
0 |
9 |
|a group theory
|2 eczenas
|
| 700 |
1 |
|
|a Scheffers, Georg Wilhelm,
|d 1866-1945
|7 mzk2012728760
|4 aut
|
| CAT |
|
|
|a ZITTERBART
|b 02
|c 20090610
|l MUB01
|h 1317
|
| CAT |
|
|
|a BATCH-UPD
|b 02
|c 20091102
|l MUB01
|h 0713
|
| CAT |
|
|
|a BATCH-UPD
|b 02
|c 20091103
|l MUB01
|h 0209
|
| CAT |
|
|
|c 20091203
|l MUB01
|h 0231
|
| CAT |
|
|
|c 20091203
|l MUB01
|h 1913
|
| CAT |
|
|
|a BATCH-UPD
|b 00
|c 20091219
|l MUB01
|h 0814
|
| CAT |
|
|
|a BATCH-UPD
|b 00
|c 20100501
|l MUB01
|h 1214
|
| CAT |
|
|
|a batch
|b 00
|c 20120324
|l MUB01
|h 0126
|
| CAT |
|
|
|c 20120610
|l MUB01
|h 1945
|
| CAT |
|
|
|a BATCH
|b 00
|c 20130303
|l MUB01
|h 1106
|
| CAT |
|
|
|a VACOVAX
|b 02
|c 20130725
|l MUB01
|h 1113
|
| CAT |
|
|
|a BATCH
|b 00
|c 20151226
|l MUB01
|h 0020
|
| CAT |
|
|
|c 20180831
|l MUB01
|h 1054
|
| CAT |
|
|
|c 20210614
|l MUB01
|h 0938
|
| CAT |
|
|
|c 20210614
|l MUB01
|h 1928
|
| CAT |
|
|
|a VACOVAX
|b 02
|c 20240510
|l MUB01
|h 1000
|
| LOW |
|
|
|a POSLANO DO SKCR
|b 2018-08-31
|
| 994 |
- |
1 |
|l MUB01
|l MUB01
|m BOOK
|1 PRIF
|a Přírodovědecká fakulta
|2 PRFSK
|b ÚK sklad
|3 I-33428
|5 3145122948
|4 PČ: , DPČ: , matematika
|8 20090610
|f 71
|f Prezenční SKLAD
|q 20180614
|
| AVA |
|
|
|a SCI50
|b PRIF
|c ÚK sklad
|d I-33428
|e available
|t K dispozici
|f 1
|g 0
|h N
|i 0
|j PRFSK
|