|
|
|
|
LEADER |
01913nam a22004577a 4500 |
001 |
MUB01000577598 |
003 |
CZ BrMU |
005 |
20240209091324.0 |
008 |
090319s1888 gw ||||| |||||||||||ger d |
STA |
|
|
|a POSLANO DO SKCR
|b 2018-06-21
|
040 |
|
|
|a BOD004
|b cze
|
072 |
|
7 |
|a 514
|x Geometrie
|2 Konspekt
|9 13
|
080 |
|
|
|a 514
|2 MRF
|
080 |
|
|
|a 514.764.2
|2 MRF
|
100 |
1 |
|
|a Hofmann, Friedrich,
|d 1813-1888
|7 xx0161585
|4 aut
|
245 |
1 |
0 |
|a Methodik der stetigen Deformation von zweiblättrigen Riemann'schen Flächen :
|b Ein Uebungsbuch fir den geometrieschen Teil Funktionentheorie /
|c von Fritz Hofmann
|
260 |
|
|
|a Halle a. S. :
|b Louis Nebert,
|c 1888
|
300 |
|
|
|a v, 50 s.
|
650 |
0 |
7 |
|a geometrie
|7 ph114624
|2 czenas
|
650 |
0 |
7 |
|a Riemannova geometrie
|7 ph118049
|2 czenas
|
650 |
0 |
9 |
|a geometry
|2 eczenas
|
650 |
0 |
9 |
|a Riemannian geometry
|2 eczenas
|
CAT |
|
|
|a ZITTERBART
|b 02
|c 20090319
|l MUB01
|h 1028
|
CAT |
|
|
|a BATCH-UPD
|b 02
|c 20091102
|l MUB01
|h 0706
|
CAT |
|
|
|a BATCH-UPD
|b 02
|c 20091103
|l MUB01
|h 0203
|
CAT |
|
|
|c 20091203
|l MUB01
|h 0225
|
CAT |
|
|
|c 20091203
|l MUB01
|h 1908
|
CAT |
|
|
|a BATCH-UPD
|b 00
|c 20091219
|l MUB01
|h 0809
|
CAT |
|
|
|a BATCH-UPD
|b 00
|c 20100501
|l MUB01
|h 1208
|
CAT |
|
|
|a batch
|b 00
|c 20120324
|l MUB01
|h 0123
|
CAT |
|
|
|a BATCH
|b 00
|c 20130303
|l MUB01
|h 1050
|
CAT |
|
|
|a HONIGOVAX
|b 02
|c 20140401
|l MUB01
|h 1511
|
CAT |
|
|
|a BATCH
|b 00
|c 20151226
|l MUB01
|h 0009
|
CAT |
|
|
|c 20180621
|l MUB01
|h 1020
|
CAT |
|
|
|c 20210614
|l MUB01
|h 0937
|
CAT |
|
|
|c 20210614
|l MUB01
|h 1926
|
CAT |
|
|
|a VACOVAX
|b 02
|c 20240209
|l MUB01
|h 0913
|
LOW |
|
|
|a POSLANO DO SKCR
|b 2018-06-21
|
994 |
- |
2 |
|l MUB01
|l MUB01
|m ISSBD
|1 PRIF
|a Přírodovědecká fakulta
|2 PRFSK
|b ÚK sklad
|3 I-20042
|5 3145119131
|4 PČ: , DPČ: , matematika
|8 20090319
|f 71
|f Prezenční SKLAD
|i 00000010
|j 10
|k 10
|l 3145119131
|q 20180528
|r 00000001
|
AVA |
|
|
|a SCI50
|b PRIF
|c ÚK sklad
|d I-20042
|e available
|t K dispozici
|f 1
|g 0
|h N
|i 0
|j PRFSK
|