Monadic second-order logic on infinite words and trees

We present one of the fundamental results on the automata theory, namely the correspondence between finite automata recognizability and monadic second--order logic definability. The types of languages concerned are mainly those of infinite words and trees. As a corollary, we show the monadic second-...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Křetínský, Jan, 1984- (Autor práce)
Další autoři: Kunc, Michal, 1974- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Angličtina
Vydáno: 2007.
Témata:
On-line přístup:http://is.muni.cz/th/139914/prif_b/
Obálka
Popis
Shrnutí:We present one of the fundamental results on the automata theory, namely the correspondence between finite automata recognizability and monadic second--order logic definability. The types of languages concerned are mainly those of infinite words and trees. As a corollary, we show the monadic second--order logics with one and two successors to be decidable. These results are due to Büchi (1962) and Rabin (1969). We also illustrate the theory by our original examples.
Popis jednotky:Vedoucí práce: Michal Kunc.
Fyzický popis:v, 46 l.