Aritmetické vlastnosti kombinačních čísel /

V této bakalářské práci se budeme zabývat vlastnostmi kombinačních čísel, zvláště pak jejich dělitelností prvočísly. Seznámíme se například s Lucasovou větou, která nám nabízí jednoduchý způsob výpočtu zbytku kombinačního čísla po dělení prvočíslem. V poslední kapitole pak odvodíme Kummerovu větu, p...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Skálová, Jana (Autor práce)
Další autoři: Šimša, Jaromír, 1954- (Vedoucí práce)
Typ dokumentu: VŠ práce nebo rukopis
Jazyk:Čeština
Vydáno: 2017
Témata:
On-line přístup:http://is.muni.cz/th/437136/prif_b/
Obálka
Popis
Shrnutí:V této bakalářské práci se budeme zabývat vlastnostmi kombinačních čísel, zvláště pak jejich dělitelností prvočísly. Seznámíme se například s Lucasovou větou, která nám nabízí jednoduchý způsob výpočtu zbytku kombinačního čísla po dělení prvočíslem. V poslední kapitole pak odvodíme Kummerovu větu, pomocí které lze určit rozklad libovolného kombinačního čísla na prvočinitele.
In this thesis we study combinatorial numbers, especially their divisibility by prime numbers. We wish to present Lucas Theorem, which give us an easy way how to compute remainder after division of a combinatorial number by a prime number. In fourth chapter we will derive Kummer’s Theorem, which we can use to write out the prime factorization of any combinatorial number.
Popis jednotky:Vedoucí práce: Jaromír Šimša
Fyzický popis:46 listů